Synthesis of a New Class of Arylsulfonylethylsulfonylmethyloxazolines and Thiazolines

Venkatapuram Padmavathi,* Bhumireddy Chinnachennaiahgari Venkatesh, Chokkappagari Premakumari, and Adivireddy Padmaja

Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India *E-mail: vkpuram2001@yahoo.com Received October 17, 2010 DOI 10.1002/jhet.865 View this article online at wileyonlinelibrary.com.

A new class of arylsulfonylethylsulfonylmethyl oxazolines and thiazolines were prepared using multistep, one-pot methodologies exploiting lanthanide alkoxides and under microwave irradiation. The microwave method provides an excellent approach in a single step with high yields.

J. Heterocyclic Chem., 49, 646 (2012).

INTRODUCTION

Oxazolines and thiazolines are important constituents of numerous bioactive natural products of peptide origin. Their wide range of antitumor, antiviral, and antibiotic activities has fueled numerous synthetic investigations [1]. In addition, 2-oxazolines are excellent catalyst ligands [2-4], protecting groups [5], and monomers for the cationic ring-opening polymerization [6-10]. Thiazoles are important building blocks for preparing various pharmaceuticals. Recently, many natural products containing thiazole moiety were isolated and most of them exhibit considerable cytotoxicities and antitumor potentials [11]. Though a number of 2-substituted oxazolines and thiazolines are commercially available, the modular synthesis of oxazolines and thiazolines containing a wide range of functional side chains would be advantageous for both biomedical and materials science applications. A variety of methods have been reported for the synthesis of oxazolines viz., cyclodehydration of amidoalcohols [12], cyclocondensation of carboxylic acids [13], orthoesters [14], imidatehydrochlorides [15], imino ether hydrochlorides [16], and nitriles [17] with aminoalcohols[18]. Similarly, thiazolines are prepared by the coupling of imidates and esters with aminothiols [19], cyclodehydration of hydroxy thioamides [20], and heterocyclic interconversions from oxazolines [21] or oxazolidines [22]. Earlier, we have reported the synthesis of 2-oxazolines and 2-thiazolines from arylsulfonylacetic acid methyl ester, arylmethanesulfonylacetic acid methyl ester [23], and phenacylsulfonylacetic acid methyl ester [24]. In continuation of our interest, we, herein, report the synthesis of a new class of oxazolines and thiazolines from 2-(2-(arylsulfonyl) ethylsulfonyl)acetic acid (6).

RESULTS AND DISCUSSION

The present communication deals with the synthesis of oxazolines and thiazolines by traditional four-step three intermediate route, one-pot methodology exploiting lanthanide alkoxides and microwave irradiation. The reactive intermediate 2-(2-(arylsulfonyl)ethyl-sulfonyl)acetic acid (6) was prepared as follows. The reaction of thiophenol (1) with 2-chloroethanol followed by chlorination and oxidation provided arylsulfonyl ethyl chloride (4). The reaction of 4 with 2-mercaptoacetic acid gave 2-(2-(arylsulfonyl) ethylthio)acetic acid (5), which on oxidation resulted in 6. Esterification of 6 produced methyl 2-(2-(arylsulfonyl) ethyl-sulfonyl) acetate (7; Scheme 1).

The ester functionality in **7** was used to develop oxazoline and thiazoline rings by multistep methodology. The reaction of **7** with 2-aminoethanol provided *N*-(2-hydroxyethyl)-2-(arylsulfonylethylsulfonyl)acetamide (**8**). Chlorination of **8** with thionyl chloride furnished *N*-(2-chloroethyl)-2-(arylsulfonylethylsulfonyl)acetamide (**9**). Cyclocondensation of **9** with NaH afforded 2-((2-(arylsulfonyl)ethylsulfonyl)methyl)-4,5-dihydrooxazole (**10**; Scheme 2). In a similar way, the reaction of **7** with 2-aminoethanethiol gave *S*-2-aminoethyl 2-(2-(arylsulfonyl)ethylsulfonyl)ethylsulfonyl) ethylsulfonyl) ethylsulfonyl) ethylsulfonyl) methyl)-4,5-dihydrothiazole (**12**; Scheme 2, Method A).

Samarium chemistry was also exploited to prepare the compounds 10 and 12 in one-pot methodology. Thus, the reaction of 7 with 2-aminoethanol in the presence of *n*-butyllithium complexed with 5-10% molar equivalent of anhydrous samarium (III) chloride suspension in toluene gave 10. Likewise, the compound 12 was obtained by

column chromatography. The structures of all the compounds 6-12 are ascertained by ¹H and ¹³C NMR spectra. (See Tables 1-3.)

c) Cl

ii) NH2CH2CH2SH / DCM / M.W / 3-5 min / 560 Watts

CONCLUSIONS

A new class of arylsulfonylethylsulfonylmethyl oxazolines and thiazolines were synthesized from the synthetically vulnerable intermediate 2-(2-(arylsulfonyl) ethylsulfonyl)acetic acid by traditional four-step three intermediate routes, one-pot methodologies using samarium (III) chloride and under microwave irradiation. The microwave methodology provides an excellent approach in a single step with high yields.

EXPERIMENTAL

Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by TLC (silica gel H, BDH, hexane/ethyl acetate, 3:1). The IR spectra were recorded on a Thermo Nicolet IR 200 FTIR spectrometer as KBr pellets, and the wave numbers were given in cm⁻¹. The ¹H NMR spectra were recorded in CDCl₃/DMSO- d_6 on a Jeol JNM λ -400 MHz. The ¹³C NMR spectra were recorded in CDCl₃/DMSO-d₆ on a Jeol JNM spectrometer operating at λ -100 MHz. All chemical shifts are reported in ppm using TMS as an internal standard. The microanalyses were performed on a Perkin-Elmer 240C elemental analyzer.

Multistep synthesis of 2-oxazolines and 2-thiazolines. Methyl 2-(2-(arylsulfonyl)ethylsulfonyl)acetate (7). General procedure. A solution of 2-(2-(arylsulfonyl)ethylsulfonyl) acetic acid (6; 10 mmol) in methanol (10 mL) and Conc. H₂SO₄ (1 mL) was refluxed on a steam bath for 4-5 h. The contents of the flask were cooled and poured onto crushed ice. The solid separated was collected by filtration, washed with cold water, and dried. The crude product was recrystallized from methanol to get pure methyl 2-(2-(phenylsulfonyl) ethylsulfonyl)acetate (7a; 68%), mp 121-123 °C; methyl 2-(2-tosylethylsulfonyl)acetate (7b; 70%), mp 142–144 °C; and methyl 2-(2-(4-chlorophenyl-sulfonyl)ethylsulfonyl)acetate (7c; 72%), mp 157–159 °C.

the reaction of 7 with aminoethanethiol in the presence of samarium chloride and *n*-butyllithium (Scheme 3; Method B).

The microwave assisted synthesis of compounds 10 and 12 was also carried out to establish the general validity of this technique for the development of oxazolines and thiazolines. The direct irradiation of compound 6 and 2-aminoethanol at 540 watts for 3-5 min gave the compound 10. Similarly, the microwave irradiation of compound 6 with 2-aminoethanethiol at 560 watts for 4-5 min resulted in 12 (Scheme 4; Method C). The products 10 and 12 were isolated by solvent extraction and purified by

Physical data and analytical data for compounds 10 and 12.							
				Analyses % Calcd. (Found)			
Compd. No.	Mp (°C)	Yield (%)	Molecular formula	С	Н	Ν	
10a 10b 10c 12a 12b 12c	153–155 135–137 166–168 157–159 150–152 178–180	70, 75, a 95 ^b 72, 78, a 92 ^b 75, 80, a 94 ^b 69, 73, a 94 ^b 68, 76, a 90 ^b 69, 72, a 93 ^b	$\begin{array}{c} C_{12}H_{15}NO_5S_2\\ C_{13}H_{17}NO_5S_2\\ C_{12}H_{14}CINO_5S_2\\ C_{12}H_{15}NO_4S_3\\ C_{13}H_{17}NO_4S_3\\ C_{12}H_{14}CINO_4S_3\\ \end{array}$	45.41–45.48 47.11–47.16 40.97–41.01 43.22–43.29 44.94–44.98 39.18–39.15	4.76-4.78 5.17-5.13 4.01-4.02 4.53-4.50 4.93-4.95 3.84-3.89	4.41-4.47 4.23-4.27 3.98-4.04 4.20-4.25 4.03-4.07 3.81-3.86	

 Table 1

 Physical data and analytical data for compounds 10 and 12

^aYields in Method B.

^bYields in Method C.

IR (KBr) (cm^{-1}) Compounds SO_2 C = NC = ONH OH NH_2 7a 1143 1336 1735 _ 7b 1138 1330 1729 1328 7c 1132 _ 1730 8a 1141 1325 1645 3334 3390 8b 1136 1330 1639 3343 3381 8c 1139 1337 1643 3338 3375 9a 1137 1330 _ 658 3340 9b 1134 1324 1670 3324 _ 9c 1140 1335 1664 3335 10a 1129 1332 1575 _ _ 10b 1135 1340 1584 _ 10c 1129 1329 1570 11a 1130 1341 1650 3410, 3325 1126 1339 3420, 3330 11b _ 1645 11c 1134 1333 1647 3415, 3310 1137 1330 1560 12a _ 12b 1138 1338 1550 _ _ 1345 1135 1565 12c _ _

Table 2IR data of compounds 7–12.

N-(2-Hydroxyethyl)-2-(arylsulfonylethylsulfonyl)acetamide (8).

General Procedure. A mixture of methyl 2-(2-(arylsulfonyl) ethylsulfonyl)acetate (7; 10 mmol), 2-aminoethanol (10 mmol), methanol (5 mL), and NaOMe (10 mmol) was refluxed for 6–8 h. The solution was concentrated, cooled, and poured onto crushed ice. The solid separated was filtered, dried, and recrystallized from methanol yielded analytically pure N-(2-hydroxyethyl)-2-(phenylsulfonylethylsulfonyl)acetamide (**8a**; 70%), mp 100–102 °C; N-(2-hydroxyethyl)-2-(4-methylphenyl-sulfonylethylsulfonyl)acetamide (**8b**; 74%), mp 115–117 °C; and N-(2-hydroxyethyl)-2-(4-chlorophenylsulfonylethylsulfonyl) acetamide (**8c**; 72%), mp 132–134 °C.

N-(2-*Chloroethyl)*-2-(*arylsulfonylethylsulfonyl)acetamide* (9). *General Procedure.* The compound *N*-(2-hydroxyethyl)-2-(arylsulfonylethylsulfonyl)acetamide (8; 10 mmol), thionyl chloride (15 mmol), and methanol (10 mL) were refluxed for 11–13 h. It was cooled and poured onto crushed ice. The solid separated was filtered, dried, and crystallized from methanol to get pure *N*-(2-chloroethyl)-2-(phenylsulfonylethylsulfonyl) acetamide (**9a**; 65%), mp 151–153 °C; *N*-(2-chloroethyl)-2-(4-methylphenylsulfonylethylsulfonyl)acetamide (**9b**; 68%), mp 142–144 °C; and *N*-(2-chloroethyl)-2-(4-chlorophenylsulfonylethylsulfonyl)-acetamide (**9c**; 71%), mp 170–172 °C.

2-((2-(Arylsulfonyl)ethylsulfonyl)methyl)-4,5-dihydrooxazole (10). *General Procedure.* To a solution of *N*-(2-chloroethyl)-2-(arylsulfonylethylsulfonyl)acetamide (**9**; 1 mmol) in tetrahydrofuran (3 mL), a catalytic amount of sodium hydride was added and refluxed for 4–7 h. The reaction mixture was allowed to attain room temperature and poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from methanol.

S-2-Aminoethyl 2-(2-(arylsulfonyl)ethylsulfonyl)ethanethioate (11). General Procedure. A mixture of methyl 2-(2-(arylsulfonyl) ethylsulfonyl)acetate (7; 1 mmol), 2-aminoethanethiol (1.5 mmol), methanol (5 mL), and NaOMe (1 mmol) was refluxed for 3–5 h. The solution was cooled and poured onto crushed ice. The solid separated was filtered, dried, and recrystallized from methanol to

_

_

		-
Compound	¹ H NMR (δ, ppm)	¹³ C NMR (δ , ppm)
6a	3.33 (t, 2H, CH ₂ —SO ₂ , $J = 4.2$ Hz), 3.40 (t, 2H, SO ₂ —CH ₂ , $J = 4.2$ Hz), 4.42 (s, 2H, CH ₂ —CO), 7.68 × 0.3 (m 5H Ar H) 13.58 (bs. 1H, CH)	46.8 (CH ₂ —SO ₂), 48.1 (SO ₂ —CH ₂), 57.5 (CH ₂ —CO), 164.9 (CO), 128.4, 130.1, 134.9, 138.4 (aromatic actions)
6b	2.35 (s, 3H, Ar-CH ₃), 3.39 (t, 2H, CH ₂ —SO ₂ , $J = 4.0$ Hz), 3.46 (t, 2H, SO ₂ —CH ₂ , $J = 4.0$ Hz), 4.49 (s, 2H, CH ₂ —CO), 7.71–8.05 (m, 4H, Ar-H), 12.71 (bs, 1H, OH)	23.8 (Ar-CH ₃), 45.6 (CH ₂ —SO ₂), 47.2 (SO ₂ —CH ₂), 58.7 (CH ₂ —CO), 165.2 (CO), 129.2, 131.7, 133.6, 139.5 (groundlic carbone)
6с	3.29 (t, 2H, CH ₂ —SO ₂ , $J = 4.3$ Hz), 3.41 (t, 2H, SO ₂ —CH ₂ , $J = 4.3$ Hz), 4.40 (s, 2H, CH ₂ —CO), 7.52–7.98 (m 4H Ar-H) 12.91 (bs. 1H OH)	(aromatic carbons) 46.1 (CH ₂ —SO ₂), 47.9 (SO ₂ —CH ₂), 56.9 (CH ₂ —CO), 163.7 (CO), 128.9, 131.4, 134.1, 137.2 (aromatic carbons)
7a	3.58 (t, 2H, CH ₂ —SO ₂ , $J = 4.0$ Hz), 3.68 (t, 2H, SO ₂ —CH ₂ , $J = 4.0$ Hz), 3.82 (s, 3H, OCH ₃), 4.05 (s, 2H, CH ₂ —CO), 7.60–7.95 (m, 5H, Ar-H)	46.9 (CH ₂ —SO ₂), 48.6 (SO ₂ —CH ₂), 53.3 (OCH ₃), 57.9 (CH ₂ —CO), 162.8 (CO), 128.1, 129.5, 134.3, 138.2 (aromatic carbons)
7b	2.41 (s, 3H, Ar-CH ₃), 3.49 (t, 2H, CH ₂ —SO ₂ , <i>J</i> = 4.2 Hz), 3.61 (t, 2H, SO ₂ —CH ₂ , <i>J</i> = 4.2 Hz), 3.79 (s, 3H, OCH ₃), 4.13 (s, 2H, CH ₂ —CO), 7.66–8.01 (m, 4H, Ar-H)	24.9 (Ar-CH ₃), 45.4 (CH ₂ —SO ₂), 47.6 (SO ₂ —CH ₂), 54.1 (OCH ₃), 58.6 (CH ₂ —CO), 164.7 (CO), 130.1, 132.0, 134.7, 139.5 (aromatic carbons)
7c	3.50 (t, 2H, CH ₂ —SO ₂ , <i>J</i> = 4.3 Hz), 3.59 (t, 2H, SO ₂ —CH ₂ , <i>J</i> = 4.3 Hz), 3.80 (s, 3H, OCH ₃), 4.12 (s, 2H, CH ₂ —CO), 7.58–8.01 (m, 4H, Ar-H)	45.7 (CH ₂ —SO ₂), 47.9 (SO ₂ —CH ₂), 53.8 (OCH ₃), 56.4 (CH ₂ —CO), 164.2 (CO), 129.2, 130.5, 134.7, 137.1 (aromatic carbons)
8a	3.12 (t, 2H, NH—CH ₂ , <i>J</i> = 4.2 Hz), 3.34 (t, 2H, CH ₂ —OH, <i>J</i> = 4.2 Hz), 3.60 (t, 2H, CH ₂ —SO ₂ , <i>J</i> = 4.8 Hz), 3.73 (t, 2H, SO ₂ —CH ₂ , <i>J</i> = 4.8 Hz), 4.22 (s, 2H, CH ₂ —CO), 4.75 (bs, 1H, OH), 7.69–7.94 (m, 5H, Ar-H), 8.39 (bs, 1H, NH)	42.2 (NH—CH ₂), 47.0 (CH ₂ —SO ₂), 48.2 (SO ₂ —CH ₂), 58.2 (CH ₂ —CO), 59.8 (CH ₂ —OH), 162.1 (CO-NH), 128.4, 130.1, 134.9, 138.4 (aromatic carbons)
8b	2.32 (s, 3H, Ar-CH ₃), 3.24 (t, 2H, NH—CH ₂ , $J = 4.3$ Hz), 3.38 (t, 2H, CH ₂ —OH, $J = 4.3$ Hz), 3.56 (t, 2H, CH ₂ —SO ₂ , $J = 5.0$ Hz), 3.69 (t, 2H, SO ₂ —CH ₂ , $J = 5.0$ Hz), 4.34 (s, 2H, CH ₂ —CO), 4.81 (bs, 1H, OH), 7.60–8.03 (m, 4H, Ar-H), 8.51 (bs, 1H, NH)	22.9 (ar-CH ₃), 43.4 (NH—CH ₂), 47.8 (CH ₂ —SO ₂), 48.9 (SO ₂ —CH ₂), 57.3 (CH ₂ —CO), 58.7 (CH ₂ —OH), 164.5 (CO-NH), 129.5, 131.1, 134.2, 139.7 (aromatic carbons)
8c	3.19 (t, 2H, NH—C H_2 , $J = 4.1$ Hz), 3.32 (t, 2H, C H_2 —OH, $J = 4.1$ Hz), 3.56 (t, 2H, C H_2 —SO ₂ , $J = 4.6$ Hz), 3.69 (t, 2H, SO ₂ —C H_2 , $J = 4.6$ Hz), 4.30 (s, 2H, C H_2 —CO), 4.68 (bs, 1H, OH), 7.65–7.99 (m, 4H, Ar-H), 8.43 (bs, 1H, NH)	43.1 (NH—CH ₂), 47.1 (CH ₂ —SO ₂), 48.0 (SO ₂ —CH ₂), 57.8 (CH ₂ —CO), 59.7 (CH ₂ —OH), 163.7 (CO-NH), 128.7, 131.3, 133.8, 137.9 (aromatic carbons)
9a	3.28 (t, 2H, NH—CH ₂ , <i>J</i> = 4.4 Hz), 3.60 (t, 2H, CH ₂ —Cl, <i>J</i> = 4.4 Hz), 3.69 (t, 2H, SO ₂ —CH ₂ , <i>J</i> = 5.1 Hz), 3.74 (t, 2H, CH ₂ —SO ₂ , <i>J</i> = 5.1 Hz), 4.31 (s, 2H, CH ₂ —CO), 7.64–7.88 (m, 5H, Ar-H), 8.73 (bs, 1H, NH).	42.1 (NH—CH ₂), 44.9 (CH ₂ —SO ₂), 45.8 (CH ₂ —Cl), 47.5 (SO ₂ —CH ₂), 59.7 (CH ₂ —CO), 163.8 (CO—NH), 129.1, 131.4, 134.4, 137.6 (aromatic carbons).
9b	2.41 (s, 3H, Ar-CH ₃), 3.35 (t, 2H, NH—CH ₂ , <i>J</i> = 4.3 Hz), 3.75 (t, 2H, CH ₂ —Cl, <i>J</i> = 4.3 Hz), 3.79 (t, 2H, CH ₂ —SO ₂ , <i>J</i> = 4.8 Hz), 3.81 (t, 2H, SO ₂ —CH ₂ , <i>J</i> = 4.8 Hz), 4.38 (s, 2H, CH ₂ —CO), 7.70–7.98 (m, 4H, Ar-H), 8.95 (bs, 1H, NH)	24.1 (Ar-CH ₃), 41.0 (NH—CH ₂), 44.7 (CH ₂ —SO ₂), 46.1 (CH ₂ —Cl), 48.4 (SO ₂ —CH ₂), 59.1 (CH ₂ —CO), 164.3 (CO—NH), 130.2, 131.7, 134.6, 139.5 (aromatic carbons)
9c	3.32 (t, 2H, NH—CH ₂ , <i>J</i> = 4.5 Hz), 3.54 (t, 2H, CH ₂ —Cl, <i>J</i> = 4.5 Hz), 3.59 (t, 2H, SO ₂ —CH ₂ , <i>J</i> = 5.0 Hz), 3.74 (t, 2H, CH ₂ —SO ₂ , <i>J</i> = 5.0 Hz), 4.34 (s, 2H, CH ₂ —CO), 7.60–7.97 (m, 4H, Ar-H), 8.95 (bs, 1H, NH)	40.6 (NH—CH ₂), 43.7 (CH ₂ —SO ₂), 44.5 (CH ₂ —Cl), 46.4 (SO ₂ —CH ₂), 58.1 (CH ₂ —CO), 165.0 (CO—NH), 128.7, 130.6, 134.1, 138.0 (aromatic carbons)
10a	2.82 (t, 2H, C ₄ —H, $J = 4.5$ Hz), 3.57 (t, 2H, C ₅ —H, $J = 4.5$ Hz), 3.62 (t, 2H, CH ₂ —SO ₂ , $J = 5.2$ Hz), 3.67 (t, 2H, SO ₂ —CH ₂ , $J = 5.2$ Hz), 3.79 (s, 2H, CH ₂ —C=), 7.66–7.80 (m, 5H, Ar-H)	42.96 (CH ₂ —SO ₂), 47.31 (SO ₂ —CH ₂), 50.1 (C-4), 59.3 (CH ₂ —C=), 62.3 (C-5), 164.6 (C-2), 127.8, 129.6, 134.3, 138.1 (aromatic carbons)
10b	2.32 (s, 3H, Ar-CH ₃), 2.85 (t, 2H, C ₄ —H, $J = 4.3$ Hz), 3.50 (t, 2H, C ₅ —H, $J = 4.3$ Hz), 3.69 (t, 2H, CH ₂ —SO ₂ , $J = 5.0$ Hz), 3.73 (t, 2H, SO ₂ —CH ₂ , $J = 5.0$ Hz), 3.80 (s, 2H, CH ₂ —C=), 7.56–7.99 (m, 4H, Ar-H)	22.9 (Ar-CH ₃), 43.8 (CH ₂ —SO ₂), 47.4 (SO ₂ —CH ₂), 51.5 (C-4), 59.8 (CH ₂ —C=), 63.1 (C-5), 163.8 (C-2), 128.2, 130.0, 133.9, 138.5 (aromatic carbons)
10c	2.79 (t, 2H, C ₄ —H, $J = 4.4$ Hz), 3.52 (t, 2H, C ₅ —H, $J = 4.4$ Hz), 3.67 (t, 2H, CH ₂ —SO ₂ , $J = 4.9$ Hz), 3.70 (t, 2H, SO ₂ —CH ₂ , $J = 4.9$ Hz), 3.81 (s, 2H, CH ₂ —C=), 7.60–7.92 (m, 4H, Ar-H)	43.0 (CH ₂ —SO ₂), 46.9 (SO ₂ —CH ₂), 50.8 (C-4), 58.9 (CH ₂ —C=), 63.4 (C-5), 163.5 (C-2), 128.1, 129.3, 133.8, 137.8 (aromatic carbons)

 Table 3

 3¹H and ¹³C NMR data of compounds 6–12.

(Continued)

Compound	¹ H NMR (δ, ppm)	¹³ C NMR (δ, ppm)
11a	3.25 (t, 2H, S—CH ₂ , $J = 4.1$ Hz), 3.35 (t, 2H, CH ₂ —NH ₂ , $J = 4.1$ Hz), 3.65 (t, 2H, CH ₂ —SO ₂ , $J = 5.8$ Hz), 3.78 (t, 2H, SO ₂ —CH ₂ , $J = 5.8$ Hz), 4.30 (s, 2H, CH ₂ —CO), 5.48 (s, 2H, NH ₂), 7.59–7.98 (m, 5H, Ar-H)	38.5 (CH ₂ —NH ₂), 41.7 (S—CH ₂), 45.8 (SO ₂ —CH ₂), 47.6 (CH ₂ —SO ₂), 59.4 (CH ₂ —CO), 182.3 (CO), 129.5, 131.6, 134.2, 137.4 (aromatic carbons)
11b	2.38 (s, 3H, Ar-CH ₃), 3.31 (t, 2H, S—CH ₂ , $J = 4.5$ Hz), 3.40 (t, 2H, CH ₂ —NH ₂ , $J = 4.5$ Hz), 3.60 (t, 2H, CH ₂ —SO ₂ , $J = 6.0$ Hz), 3.72 (t, 2H, SO ₂ —CH ₂ , $J = 6.0$ Hz), 4.37 (s, 2H, CH ₂ —CO), 5.39 (s, 2H, NH ₂), 7.69–8.05 (m, 4H, Ar-H)	23.9 (Ar-CH ₃), 37.9 (CH ₂ —NH ₂), 42.4 (S—CH ₂), 46.7 (SO ₂ —CH ₂), 47.9 (CH ₂ —SO ₂), 58.9 (CH ₂ —CO), 181.3 (CO), 128.2, 130.7, 134.8, 139.1 (aromatic carbons)
11c	 3.36 (t, 2H, S—CH₂, J = 4.3 Hz), 3.38 (t, 2H, CH₂—NH₂, J = 4.3 Hz), 3.66 (t, 2H, CH₂—SO₂, J = 5.6 Hz), 3.76 (t, 2H, SO₂—CH₂, J = 5.6 Hz), 4.41 (s, 2H, CH₂—CO), 5.46 (s, 2H, NH₂), 7.62–8.01 (m, 4H, Ar-H) 	37.8 (CH ₂ —NH ₂), 42.4 (S—CH ₂), 45.1 (SO ₂ —CH ₂), 48.2 (CH ₂ —SO ₂), 58.4 (CH ₂ —CO), 182.7 (CO), 128.1, 131.0, 134.9, 138.0 (aromatic carbons)
12a	2.91 (t, 2H, C ₄ —H, $J = 4.4$ Hz), 3.10 (t, 2H, C ₅ —H, $J = 4.4$ Hz), 3.65 (t, 2H, CH ₂ —SO ₂ , $J = 5.9$ Hz), 3.70 (t, 2H, SO ₂ —CH ₂ , $J = 5.9$ Hz), 3.81 (s, 2H, CH ₂ —C=), 7.60–7.91 (m, 5H, Ar-H)	38.1 (C-5), 46.3 (CH ₂ —SO ₂), 47.1 (so ₂ —CH ₂), 52.4 (C-4), 58.7 (CH ₂ —C=), 162.9 (C-2), 129.1, 130.6, 134.8, 137.3 (aromatic carbons)
12b	2.29 (s, 3H, Ar-CH ₃), 2.86 (t, 2H, C ₄ —H, $J = 4.6$ Hz), 3.18 (t, 2H, C ₅ —H, $J = 4.6$ Hz), 3.59 (t, 2H, CH ₂ —SO ₂ , $J = 5.5$ Hz), 3.68 (t, 2H, SO ₂ —CH ₂ , $J = 5.5$ Hz), 3.85 (s, 2H, CH ₂ —C=), 7.67–8.07 (m, 4H, Ar-H)	24.5 (Ar-CH ₃), 37.8 (C-5), 46.9 (CH ₂ —SO ₂), 47.6 (so ₂ —CH ₂), 53.0 (C-4), 59.1 (<i>C</i> H ₂ —C=), 163.7 (C-2), 128.1, 131.4, 134.0, 139.7 (aromatic carbons)
12c	2.90 (t, 2H, C ₄ —H, $J = 4.2$ Hz), 3.15 (t, 2H, C ₅ —H, $J = 4.2$ Hz), 3.59 (t, 2H, CH ₂ —SO ₂ , $J = 5.7$ Hz), 3.76 (t, 2H, SO ₂ —CH ₂ , $J = 5.7$ Hz), 3.84 (s, 2H, CH ₂ —C=), 7.55–8.03 (m, 4H, Ar-H)	38.7 (C-5), 47.0 (CH ₂ —SO ₂), 48.1 (so ₂ —CH ₂), 52.8 (C-4), 58.4 (CH ₂ —C=), 164.5 (C-2), 129.7, 130.9, 133.7, 138.5 (aromatic carbons)

Table 3 (Continued)

obtain pure *S*-2-aminoethyl 2-(2-(phenylsulfonyl)ethylsulfonyl)ethanethioate (**11a**; 66%), mp120–122 °C; *S*-2-aminoethyl 2-(2tosylethylsulfonyl) ethanethioate (**11b**; 69%), mp 116–118 °C; and *S*-2-aminoethyl 2-(2-(4-chlorophenylsulfonyl)ethylsulfonyl)ethanethioate (**11c**; 65%), mp 126–128 °C.

2-((2-(Arylsulfonyl)ethylsulfonyl)methyl)-4,5-dihydrothiazole (**12**). General procedure. To a solution of *S*-2-aminoethyl 2-(2-(phenylsulfonyl)ethylsulfonyl)-ethanethioate (**11**; 2 mmol) in tetrahydrofuran (6 mL), a catalytic amount of sodium hydride was added and refluxed for 7–10 h. The reaction mixture was concentrated, cooled, and poured onto crushed ice. The solid obtained was filtered, dried, and recrystallized from methanol.

One-pot methodology for synthesis of 2-oxazolines and 2thiazolines by using Samarium (III) chloride (Method B). 2-((2-(Arylsulfonyl)ethylsulfonyl)methyl)-4,5-dihydrooxazole (10). General procedure. To a flask charged with anhydrous samarium (III) chloride (0.1 mmol) and dry toluene (10 mL), 2-aminoethanol (2 mmol) was added followed by *n*-butyllithium (2.2 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and heated to reflux. Then, methyl 2-(2-(arylsulfonyl)ethylsulfonyl) acetate (7; 1 mmol) was added to the contents and continued refluxion for an additional period of 6–9 h. The suspension was cooled to room temperature and filtered. The filtrate was extracted with chloroform, washed with water followed by brine solution. The solvent was removed *in vacuo*. The solid obtained was purified by column chromatography (silica gel, ethyl acetate:hexane, 1:3). **2-((2-(Arylsulfonyl)ethylsulfonyl)methyl)-4,5-dihydrothiazole (12).** General procedure. To a flask charged with anhydrous samarium (III) chloride (0.1 mmol) and dry toluene (10 mL), 2-aminoethanethiol (2 mmol) was added followed by *n*-butyllithium (2.2 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min and heated to reflux. Then, methyl 2-(2-(arylsulfonyl)ethylsulfonyl)acetate (7; 1 mmol) was added to the contents and continued refluxion for an additional period of 6–9 h. The suspension was cooled to room temperature and filtered. The filtrate was extracted with chloroform, washed with water followed by brine solution. The solvent was removed *in vacuo*. The solid obtained was purified by column chromatography (silica gel, ethyl acetate:hexane, 1:3).

One-pot methodology for the synthesis of 2-oxazolines and 2-thiazolines under microwave irradiation (Method C). *2-((2-(Arylsulfonyl)ethylsulfonyl)methyl)-4,5-dihydrooxazole (10). General procedure.* A mixture of 2-(2-(arylsulfonyl)ethylsulfonyl) acetic acid (6; 10 mmol) and 2-aminoethanol (10 mmol) were placed in a Pyrex flask in such a way as to occupy only 10% of the overall volume. The mixture was irradiated using the multimode at 540 watts for 3 min and monitored by TLC. When all the starting material had disappeared, the irradiation was terminated, and the mixture was brought to room temperature. To this, dichloromethane was added and filtered. The resultant compound obtained by evaporation of the solvent under reduced pressure was purified by column chromatography (silica gel, ethyl acetate:hexane, 1:2.5).

$\label{eq:constraint} 2-((2-(Arylsulfonyl)ethylsulfonyl)methyl)-4, 5-dihydrothiazole$

(12). General procedure. The compound 2-(2-(arylsulfonyl) ethylsulfonyl)acetic acid (6; 10 mmol) and 2-aminoethanethiol (10 mmol) were placed in a Pyrex flask in such a way as to occupy only 10% of the overall volume. The mixture was irradiated at 560 watts for 4 min and monitored by TLC. When all the starting material had disappeared, the irradiation was terminated, and the mixture was allowed to cool to room temperature. The dichloromethane was added to the resulting mixture and filtered. The compound obtained after evaporation of the solvent under vacuum was purified by column chromatography (silica gel, ethyl acetate:hexane, 1:2.5).

Acknowledgments. The authors thank University Grants Commission (UGC) for financial assistance under major research project.

REFERENCES AND NOTES

[1] (a) Jin, Z. Nat Prod Rep 2006, 23, 464; (b) Lewis, J. R. Nat Prod Rep 2002, 19, 223; (c) Roy, R. S.; Gehring, A. M.; Milne, J. C.; Belshaw, P. J.; Walsh, C. T. Nat Prod Rep 1999, 16, 249.

[2] Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Itoh, K. Organomet 1989, 8, 846.

[3] Nishiyama, H.; Park, S. B.; Itoh, K. Tetrahedron Asymmetry 1992, 3, 1029.

[4] Gissibl, A.; Finn, M. G.; Reiser, O. Org Lett 2005, 7, 2325.

[5] Vorbruggen, H.; Krolikiewicz, K. Tetrahedron 1993, 49, 9353.

- [6] Kobayashi, S.; Uyama, H. J Polym Sci Part A: Polym Chem 2002, 40, 192.
 - [7] Aoi, K.; Okada, M. Prog Polym Sci 1996, 21, 151.

- [8] Hoogenboom, R.; Schubert, U. S. Green Chem 2006, 8, 895.
- [9] Hoogenboom, R. Macromol Chem Phys 2007, 208, 18.
- [10] Wiesbrock, F.; Hoogenboom, R.; Leenen, M. A. M.; Meier, M. A. R.; Schubert, U. S. Macromolecules 2005, 38, 5025.

[11] (a) Taori, K.; Paul, V. J.; Luesch, H. J Am Chem Soc 2008,
130, 1806; (b) Fuller, A. T. Nature 1955, 175, 722; (c) Sasse, F.;
Steinmetz, H.; Hôfle, G.; Reichenbach, H. J Antibiot 2003, 56, 520;
(d) Kehraus, S.; Konig, G. M.; Wright, A. D. J Org Chem 2002, 67,
4989; (e) Gerth, K.; Bedorf, N.; Hofle, G.; Irschik, H.; Reichenbach, H.
J Antibiot 1996, 49, 560; (f) Umezawa, H.; Maeda, K.; Takeuchi, T.;
Okami, Y. J Antibiot 1966, 19, 200; (g) Silakowski, B.; Schairer, H. U.;
Ehret, H.; Kunze, B.; Weinig, S.; Nordsiek, G.; Brandt, P.; Blocker, H.;
Hofle, G.; Beyer, S.; Muller, R. J Biol Chem 1999, 274, 37391;
(h) Abe, H.; Takaishi, T.; Okuda, T. Tetrahedron Lett 1978, 19, 2791.

[12] Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org Lett 2004, 6, 1685.

[13] G'omez, M.; Muller, G.; Rocamora, M. Coord Chem Rev 1999, 193, 769.

[14] Molina, P.; T'arraga, A.; Curiel, D.; Bautista, D. Tetrahedron Asymmetry 2002, 13, 1621.

[15] Saravanan, P.; Corey, E. J. J Org Chem 2003, 68, 2760.

[16] Scott, A. Aust J Chem 2003, 56, 953.

[17] Luisi, R.; Capriati, V.; Florio, S.; Piccolo, E. J Org Chem 2003, 68, 10187.

[18] Inoue, M.; Suzuki, T.; Nakada, M. J Am Chem Soc 2003, 125, 1140.

[19] Duffey, M. O.; LeTiran, A.; Morken, J. P. J Am Chem Soc 2003, 125, 1458.

[20] Abrunhosa, I.; Delain-Bioton, L.; Gaumont, A.-C.; Gulea, M.; Masson, S. Tetrahedron 2004, 60, 9263.

[21] Fu, B.; Du, D.-M.; Xia, Q. Synthesis 2004, 2, 221.

[22] Kozikowski, A. P.; Hassan, N. M. J Org Chem 1977, 42, 2039.

[23] Padmavathi, V.; Chandra Obula Reddy, B.; Venkata Subbaiah,D. R. C.; Padmaja, A. Indian J Chem 2004, 43B, 2456.

[24] Padmavathi, V.; Chandra Obula Reddy, B.; Thriveni, P.; Nagendra Mohan, A. V. Synth Commun 2007, 37, 3127.